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OUTLINE DEVCOM

 Research Motivation

e Silicon Carbide (SIC) for High Voltage, High Current
« Technical Challenges

« ARL Approach and Capabilities

e Device Overview

e Evaluation Methods

e Fast-Pulse Switching Results

 Key Takeaways
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RESEARCH MOTIVATION DEVCOM

« U.S. Army Combat Capabilities Development Command
(CCDC) Army Research Laboratory (ARL) conducts disruptive
foundational research in support of Army modernization.

« Advancing components for high-power transmission and
pulsed power enhances mission capability (mobility, survivability,
& lethality) of Army high-priority modernization programs
(Air & Missile Defense, Future Vertical Lift, & Next-
Generation Combat Vehlcle) by expanding hlgh power range,
Increasing power density, and maximizing efficiency of
switching components.

Versatile tactical power for survivability & lethality,
multidomain dominance

« By driving high-voltage SIiC device design and fully
understanding and validating devices’ capabilities relevant to
Army needs, ARL can innovate new solutions for the future
Army.
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RESEARCH MOTIVATION

Si and SiC Power Devices

DEVCOM
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* SIC continues to be the most promising, near-term, wide band gap (WBG) semiconductor
replacements for traditional Si-based power solutions.

« SiC is also the most promising, near-term WBG material to push forward into the high-voltage regime
(>10 kV) — enabling new capabilities.

 ARL and research partners are focused on optimizing design at the chip level and propelling
packaging innovation for high-voltage, power-dense modules.
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Benefits of SIiC Over Si
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. o . . Pulse/intermittent g
 Higher breakdown electric field (thinner epilayer, Commercial Product Focusfor  Si power I
narrower termination) Si & SiC Continuous Limit xtremel, V, 1, iDevelopment
Power Power I Area
Protection :
« Lower R, and switching losses at very high- e e Directed E
current density (greater efficiency) 1,000 - : 5“"“'““ ERETOY. |
L. . ] Device 100 L R e ——
» Good thermal conductivity (simpler cooling system, Current Automotive
. (A) Electronics
more thermal margin) —
. . 1 T T T T
* High Young’s modulus (withstand thermal 10 00 1000 10,000 100,000
transients of pulse stresses) Device Blocking Voltage (V)

_ _ _ _ High voltage combined with pulsed high current
* Higher saturated drift velocity (supports high dl/dt is our unique research focus.

and dV/dt capabilities)
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TECHNICAL CHALLENGES
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Device Design Challenges
& —

e Material thickness/purity/uniformity

DEVCOM

e Trade-offs to increasing high voltage & chip size 3«kv, 0.16 cm?
e Fabrication complexity

15 kV, 1 cm?

Device Characterization Challenges

.Cathode

s
1E-06 ' = | E
0.92 pA at 15.8 kV / : / I —— R —
g 8E-07 A . e . /Sunentcrovding efects
5 : I Packaging
et . FTEmIR ‘ Parallel Devices
S 4e07 ] Higher Cgrrent | - e R
s : Density =
- ] ‘—_é_ * e
2E-07 Wolfspeed =5
0E+00 T T T ' ' " =
0 5000 10000 15000 —_—
Blocking Voltage, Va, (V) Modeling Transient Time ()
Higher Voltage Behavior Turn-on Control

UNCLASSIFIED | Distribution Statement A: Approved for public release; distribution is unlimited.




APPROACH Et'svcaM

e  Partner with industry and universities to drive innovation in single-die
device design, fabrication, packaging, controls for pulsed power, and low-
duty cycle continuous power Army applications.

« Fully characterize and analyze device behavior at extreme electrical
stresses (o gain deeper understanding of semiconductor physics and
design scalabillity.

« Directly compare different, novel device designs to determine advantages
of each and how to further optimize epi thickness, material doping, chip
layout, and processing.
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_ CURRENT ARL HIGH-VOLTAGE DEVICE
- PROGRAM PARTNERS E"E"C”’“

Cree-Wolfspeed

. Previous programs (2012-2016) invested in epi fabrication & investigated designs for high-voltage
insulated-gate bipolar transistors (IGBTs), metal-oxide-semiconductor field-effect transistors
(MOSFETS), thyristors, & diodes.

= New program focus is to further develop IGBTs (>20 kV, 30 A) and thyristors (>15 kV, 50 A
continuous or 5 kA pulsed).

SUNY-Poly

. Focus on 12-kV, 20-A MOSFETs with Prof. Woongje Sung.
s Leveraging state-of-the art capabilities of New York’'s Power Electronics Manufacturing Consortium.

GeneSiC

| Focus on 15-kV, 20-A MOSFETs & 20-kV, 40-A IGBTSs.
- Leveraging previous work under the U.S. Department of Energy (DoE).
o Will utilize X-Fab (leveraging DoE’s Power America).

| Consortium with Ohio State and the Nuclear Reactor Laboratory.
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ARL has custom, high-voltage, high-current test capabilities highly relevant to
Army-fielded conditions. Evaluation capabilities include:

* DC blocking voltage to 30 kV
e Pulsing >100 kA, widths ranging from 500 ns to 1 ms
» 10-kHz, step-down buck converter (10 kV to 2 kV)

Ability to test at very high-pulsed current density has led to many insights, which
steered significant improvements in device design and major changes to
component packaging methods and materials used.
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EXPERIMENTAL FOCUS
DEVCOM

For high-power EM systems, need to understand device operation over:

» High-voltage transients
* High-current densities
e Large-chip areas

e Turn-on process |
* Turn-off process 15kV, 1 cm? and 6 kV, 0.5 cm?

super gate turn-off thyristors
(SGTOs)

Understanding behavior at faster switching conditions is relevant to:

(1) Explore broader application space for high-voltage SiC diodes and thyristors.

(2) Investigate consequences or trade-offs to increasing high voltage and chip size.

(3) Optimizing device design for a wide range of switching conditions.
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POSSIBLE APPLICATION SPACE EJ'EVEDM

Replacing Thyratron for Pulsed Driver Reducing Stages of Marx High-Voltage Generator

8-Stage Switch Test Using 27nF, 30ohm PFN, Operating at 385Hz
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Sanders. “Solid state switches for high-frequency operation
as thyratron replacements,” www.appliedpulsepower.com, . . . . .
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' Generator,” IEEE Trans. Plasma Science, 2006.
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N THYRISTOR AND PIN FOR PULSED HIGH
- CURRENT E}EVCDM

« Embedded termination for simpler processing and greater blocking yield

e 140-pum blocking layer for 15 kV

« Ni ohmic annealed at elevated temperature for stable V; at high-current densities

« 1450 C lifetime enhancement to reduce V; and improve latch-up and holding current
 Optimized epi surface treatment process to maintain high-voltage blocking

Cathode Anode
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P gate
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] N-DOPED EPI DESIGN AND EXPECTATIONS  [ZZvcam

 The 15 kV SIC n-thyristor utilizes an identical device structure to that used for the p-thyristor, except the polarity of the
epilayer is reversed and the p+ injector layer at the anode was thinned.

» Fabrication process includes lifetime enhancement oxidation at 1450 C and epi surface treatment prior to gate and
cathode epi growth.

It was projected that carrier lifetimes of 15-20 ps in the n-epi would lead to lower V¢ and greater lateral current
spreading velocity.
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METHODOLOGY BEvCoM

o

e  Design circuit for high di/dt (emphasis on t)

* Investigate gating techniques @2 |
« Investigate minimum switching period (charge, switching, recovery) reSR=4
e  Modify circuitry for higher V, burst rate Rogowski

«  Optimize gating controls and data acquisition coll

e Identify limits and align with applications

PiN
L diode
SGTO

R )W

Charging — -
T 1 PiN

Circuitry C R,

Fast-discharge
high-voltage
General schematic of the capacitor discharge circuit. capacitor

The PiN diode was later removed to allow thyristor to
self-commutate.
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TURN-ON DELAY AND DI/DT E,'EW_-UM

Contributing Factors: — base width of each transistor
— diffusion rates

— current density

— charge

— device geometry

N e T Turn-on Delay Time
-1 m'“?- 1 1"'):__2 WPZ p-type base width
By \5 PN tg=s—— = W,y: n-type base width
A L Uy 4 Uy D,.: electron diffusion rate
F atiar i D,: hole diffusion rate
N % J: cathode current density
NN, qcherge
. . HL*
Cathode Spreading Velocity D,: ambipolar diffusion
General cross section of a ) | : coefficient
thyristor and equivalent . Q(Jilf’ 1 \ IFTHL
transistor circuit T q\Wy+Wp/ | D,
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TURN-ON DELAY AND DI/DT

DEVCOM
Importance of Understanding Performance Limitations at Initial Turn-on:
 Factors into controls and trigger timing in fast-response applications
 Defines the maximum operating frequency or pulse rate
« Enables comparison of different device designs under extreme conditions
(moderate speed combined with high power)
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MINIMUM TURN-ON DELAY [oEveom
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Relevance

« Compares delays for different voltage-blocking ratings/epi designs
 Factors into controls and trigger-timing in fast-response applications
 Sets a limit on the operating frequency
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N-TYPE, P-TYPE DIRECT COMPARISON E'EVEDM

n-Doped Thyristor Pulsed Behavior p-Doped Thyristor Pulsed Behavior
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N-TYPE, P-TYPE DIRECT COMPARISON E’EVEDM

Instantaneous Power at the Load
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The greater lateral current- o o-doped thyristor
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resulted in lower switching loss at < 4000
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N-TYPE, P-TYPE DIRECT COMPARISON E}EVEDM

n-Doped Thyristor, Maximum Repeatable Wide Pulse p-Doped Thyristor, Maximum Repeatable Wide Pulse
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] KEY TAKEAWAYS [GEveam

* For rapid, low-energy (<1 J) discharge, the n-doped thyristor had lower
switching loss, peaking 50 ns earlier than the p-doped thyristor,
transmitting 30% more instantaneous power to the load.

« At higher-energy (400 J), higher-action switching, the p-doped thyristor
had lower conduction loss, enabling almost 40% higher current density.

» Both designs could use further optimization to increase lateral current
spread at turn-on and reduce overall on-resistance.
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PATH FORWARD VDM

* Refine n-thyristor doping and layout

 Improve high-current package contact for high di/dt

« Explore further application space for the high-voltage thyristor
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